High Temperature Random Stack Creep Property of NI-CR-AL based Powder Porous Metal Manufactured with Powder Sintering Process
نویسندگان
چکیده
منابع مشابه
Creep of Ni-Al and Ni-Cr-Al Superalloy Foams
The steady-state creep rate of Ni-base metallic foams, with superalloy composition (in wt. pct) Ni7.8∼9.1Al (relative density, ρ = 2.5-2.6) and Ni-13.5∼16.6Cr-5.1∼8.9Al (ρ = 2.8∼3.0), was measured under a range of temperatures (680∼825°C) and applied stresses (0.1∼0.3 MPa), and compared with that of NiAl intermetallic foams (ρ = 5.3). The stress exponent and activation energy are within the exp...
متن کاملSimulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture
Selective laser sintering (SLS) is an attractive rapid prototyping and manufacturing (RP&M) technology as well as two-component metal powder has high melting pointer, high mechanical properties and high wear resistance. Hence, it’s meaningful to analyze its temperature field distribution and dynamical evolution rule in sintering process. A three-dimensional transient finite element model of SLS...
متن کاملSynthesis and liquid phase sintering of TiN/TiB2/Fe–Cr–Ni nanocomposite powder
Nanostructured TiN/TiB2/Fe–Cr–Ni composite powder has been prepared via high energy ball milling. Ti and BN powders are reacted to form uniform mixture of TiN and TiB2 within 2 h of milling by a mechanically activated self-sustaining reaction (MSR). The crystallite sizes of TiN nd TiB2 are about 7 and 16 nm, respectively, after 32 h of milling. Through liquid phase sintering and optimizing the ...
متن کاملPorous NiTi alloy prepared from elemental powder sintering
An elemental powder sintering (EPS) technique has been developed for the synthesis of porous NiTi alloy, in which Ni and Ti powders are used as the reactants and TiH2 powder is added as a pore-forming agent and active agent. Effects of various experimental parameters (sintering temperature, sintering time, and TiH2 content) on the porosity, pore size and pore distribution as well as phase compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archives of Metallurgy and Materials
سال: 2023
ISSN: ['1733-3490', '2300-1909']
DOI: https://doi.org/10.24425/amm.2019.127569